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 We consider the classical limit of the ideal gas, where 
ε−μ
τ
≫ 1, and the gas is in the dilute limit 

𝑛𝑛
𝑛𝑛𝑄𝑄
≪ 1.  As discussed in lecture 9, μ/τ is large and negative in a dilute ideal gas.  In this case both the 

Fermi-Dirac and Bose-Einstein distributions have the same limiting form for the thermal average 
occupation number of an orbital: 𝑓𝑓(𝜀𝜀) ≅ e−(ε−μ)/τ = 𝜆𝜆𝑒𝑒−𝜀𝜀/𝜏𝜏 ≪ 1. 

 The expression for 𝑓𝑓(𝜀𝜀) was derived for a single orbital chosen arbitrarily, in thermal and 
diffusive equilibrium with all the other orbitals (the reservoir).  Because the orbital was chosen 
arbitrarily, the expression applies to any single orbital.  Now we shall assume that the N-particle system 
consists of N particles independently choosing orbitals to occupy at temperature 𝜏𝜏 and chemical 
potential 𝜇𝜇.  We then add the constraint that the sum of 𝑓𝑓(𝜀𝜀𝑠𝑠) over all states “s” of the system must add 
up to the total number of particles in the material, which we call 𝑁𝑁.  In other words: 
𝑁𝑁 = ∑ 𝜆𝜆𝑒𝑒−𝜀𝜀𝑠𝑠/𝜏𝜏

𝑠𝑠 =𝜆𝜆∑ 𝑒𝑒−𝜀𝜀𝑠𝑠/𝜏𝜏
𝑠𝑠 .  The sum is proportional to the partition function for the single-particle-in-

a-box problem that was solved in lecture 9 as 𝑍𝑍1 = ∑ 𝑒𝑒−𝜀𝜀𝑠𝑠/𝜏𝜏
𝑠𝑠 = 𝑛𝑛𝑄𝑄𝑉𝑉, where 𝑛𝑛𝑄𝑄 = (𝑀𝑀𝑀𝑀/2𝜋𝜋ℏ2)3/2 is the 

quantum concentration and 𝑉𝑉 is the volume of the box.  We can now solve for the chemical potential: 
𝑁𝑁 = 𝜆𝜆𝑛𝑛𝑄𝑄𝑉𝑉, which leads to 𝜇𝜇 = 𝜏𝜏log⁡(𝑛𝑛/𝑛𝑛𝑄𝑄).  This same result was obtained previously in lecture 14 by a 
more ‘brute force’ method. 

 The Helmholtz free energy can be obtained by integrating the chemical potential, using the fact 

that 𝜇𝜇 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝜏𝜏 ,𝑉𝑉 .  This yields 𝐹𝐹(𝑁𝑁, 𝜏𝜏,𝑉𝑉) = 𝑁𝑁𝑁𝑁�log⁡(𝑛𝑛/𝑛𝑛𝑄𝑄) − 1�.  With the free energy, we can now 

calculate all the other thermodynamic quantities.  The pressure is 𝑝𝑝 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝜏𝜏 ,𝑁𝑁 = 𝑁𝑁𝑁𝑁/𝑉𝑉, which gives 

the ideal gas law 𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑁𝑁.  The entropy is 𝜎𝜎 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑉𝑉 ,𝑁𝑁 = 𝑁𝑁 �log⁡(𝑛𝑛𝑄𝑄/𝑛𝑛) + 5
2
�, which is the Sackur-

Tetrode equation.  The energy of the gas can be obtained from the free energy and entropy, and is 

𝑈𝑈 = 𝐹𝐹 + 𝜏𝜏𝜏𝜏 = 3
2
𝑁𝑁𝑁𝑁.  This can also be seen as a result of ‘equipartition of energy’ between the three 

translational degrees of freedom.  Each degree of freedom acquires 𝜏𝜏/2 of energy on average, so a 
particle translating in a three dimensional box acquires 3𝜏𝜏/2 of energy, and there are 𝑁𝑁 particles, hence 
the result for 𝑈𝑈.  If the particles have internal degrees of freedom, such as rotation and vibration of poly-
atomic molecules, then the system can acquire energy in those internal modes as well.  If the 
temperature is much higher than the typical energy level spacing of those internal states, then 
equipartition applies to those degrees of freedom as well.  In general, if a molecule has internal states 
with energies 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 , then one can define an internal partition function 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑒𝑒−𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 /𝜏𝜏

𝑖𝑖𝑖𝑖𝑖𝑖  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 .  The 
statistical mechanics of such a system is identical to that of a monatomic ideal gas except that the 
activity is modified as 𝜆𝜆 → 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 . 

 

 


